~ Ratios

Rarios are part of a large web of mathemarical concepts and skills known as propor-
tional reasoning that make use of ideas from multiplication, division, fractions, and
measurement. Proportional reasoning is the ability to make and use multiplicative

" comparisons among quantities. These comparisons are expressed as ratios and rates.

We use ratios and rates every day to convey information: the car is traveling at
25 mph, place 2 roses and 3 pieces of greenery in every bouquet, ground beef costs
$1.89 per pound, 3 out of every 8 doctors majored in biochemistry, and there is a
30% chance of thunderstorms.. '

Proportionality is a complex topic; it is estimated that over half the adult popula-
tion do not reason proportionally (Lamon 1999). Furthermore, students’ understand-
ing of this topic rakes years to develop—a rwo-week unit on ratios in sixth grade is
not enough for most students to acquire anything but a superficial ability to apply an
algorithm. Instead, it is necessary for students informally to explore ideas related to
thinking multiplicatively throughout the elementary grades and spend significant
time developing these concepts in middle school.

1. What Are Ratios?

A ratio is a comparison between two Or more quantities. The quantities can be either
numbers or measurements. Comparisons such as 5 pencils for $1.09, 12 degrees per

“hour, 4 girls for every 5 boys, | cup lemonade concentrate to 4 cups of warter, and 3 red

marbles compared with 8 marbles altogether are all ratios. Sometimes ratios are used
to compare more than two quantities; | part vinegar, | part linseed oil, and 1 part tur-
pentine is a ratio for an old-fashion solution used to refinish anrique furniture.

Ratios are further classified based on the type of comparison. If we are comparing
measures of the same type, such as people, inches, and marbles, we can either make
part-to-whole comparisons or part-to-part cOmparisons. Part-to-whole ratios can be
interpreted as fractions because they compare a part with a whole (e.g., the ratio 7 to
20, when comparing 7 girls with a rotal of 20 students in a classroom, is a fraction
chat tells us what part of the set—-s—are girls). Other ratios compare parts of a set
to other parts of a set. For example, we can compare 2 blue marbles with 6 red mar-
bles in a set of marbles and then express the ratio of blue marbles to red marbles as
2:6, or.1:3. Starting with either a part-to-whole ratio or a part-to-part ratio, we are
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able to construct other ratios that apply. For example, if we use the 2 blue marbles ¢,
6 red marbles rario, the ratios of biue marbles to toral number of marbles (2:8, part.
whole ratio); red marbles to total number of marbles (6:8, part-whole ratio); and red
marbles to blue marbles (6:2, part-part ratio) all provide information about the
relationship between the two colors of marbles.

When two different types of measures are being compared, the ratio is usually called
a rate. Comparisons involving number of miles and number of hours, number of dollars

and bags of sugar, and number of minutes and number of feer are all rates. Rates some-
times involve a comparison with 1 (60 miles per 1 hous, 2 bags for 1 doliar, 0.25 feet in
1 miinute}; these “unit” rates are easier for us to generalize and extend (if T can drive
60 miles in 1 hour, my trip of 180 miles will take about 3 hours). Everyday usage of the
terms ratio and rate is not always precise or correct. For exampk:, rates are often simply
referred to as ratios (which is correct but not vergf precise} On the Othf"’ hand, some

relationships are incorrectiy called rates

sures are the same: birth rates compare numba; of peopk born Wlt‘f a de%1g113ted num-
ber of people (usually 1000) and while this comparison is a ratio, it technically isn'ta
rate. A diagram may help you make sense of the different types of ratios.

Ratios

TN

Same Measures Different Measures

PN |

Part-to-Whole Part-to-Part Rate
Ratio Ratio

~ There are two common notations used to identify ratios: the colon notation and the
fraction notation. While interchangeable, the choice of notation helps focus our atten-
tion on different aspects of interpretation. The colon notation is most often used with

~ part-to- pan comparisons (3 adults ‘compared with 8 children, 3:8), while the fraction
notation 1s favored with part- to»whole comparisons (3 adults compared with 11 people
total, ). When fraction notation is used to compare two parts, it helps if the parts are
labeled: 24 Otherwise, devoid of context, the conceptual differences between ratios
and fractions can be lost and symbols can be interpreted in unexpected ways (you might

- think 2 represents 3 out of a total of 8). Finally, fraction notation is commonly used
when computmv with ratios (e.g., finding equivalent ratios or finding the value of an
unknown in a proportion) 1egardless of the type of relationship between the numbers.

Types of Comparisons

The concept of comparison or change between quantities is both simple and quire
complex. Children start comparing quantities at a very young age—they notice &
friend has more matchbox cars, they want a smaller helping of mashed potatoes at
dinner, they wonder why there are fewer girls playing basketball than playing soccer
As teachers we regularly ask comparison questions: If there are 8 boys in grade 1 and
7 boys in grade 2, are there more boys in the first or the second grade? How many more
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students have brown eyes than blue eves? The temperature dropped how many degrees yes-
terday? To answer these comparison questions, in which we are considering quanti-
ties with only one variable (e.g., number of boys, number of students, and number of
degrees), we use additive thinking, relying on addition and subtraction to answer
questions of how many, how much more, and how many fewer. Students start analyz-
ing change between quancrities using additive thinking before they start school and
with rime are able to apply this reasoning to a range of number types and sizes.

However, sometimes we compare the change between quantities in a more com-
plex way, by looking at the multiplicative relationships between quantiries. The
question If there are 8 boys in grade | and 7 boys in grade 2, are there more boys in the first
or the second grade? calls for comparing the two quantities, 8 and 7. However, if the
question instead asked which class has a larger fraction, or percentage, or proportion,
of boys, then we'd need to analyze the problem differently and would need to know
the total number of children in each class. We might reason: There are 8 boys out of
20 children in grade 1 (<5, which is less than half) and 7 boys out of 14 children in grade 2
(%, which is exactly half). So the grade I class has a smaller fraction of boys. Or we might
think: Let’s compare 8 to 20, or £, with 7 to 14, or . These ratios are equivalent to 2 to
5(#) and I to 2 (3). So in the first grade there are 2 boys out of every 5 students whereas in
the second grade there is | boy for every 2 students. Or we could use percents: 40% of the
children in'grade | are boys and 50% of the children in grade 2 are boys. Using multiplica-
rive thinking, we state that there are more boys in grade 2 because the proportion of
boys is greater, but thinking addirively there are more boys in grade 1 (8 — 7 = 1).

Let’s look at another example of how the relationship between two quanrities in a
ratio conveys different multiplicative information {(Lamon 1999):

20 students in a classroom
20 students in the auditorium

20 students in a [O-seat minivan

In each of the examples above, the same quantity (20 students) is used. If we just
compare the number of students in each situation, we might note that they are the
same or that there is no difference between them; we have used additive thinking ro
compare the quantities. But when 20 students are compared with the other (implied)
quantities, each of the comparisons, or ratios, imparts a different meaning thar calls
for multiplicative reasoning. Twenty students in one classroom is seen by many edu-
cators as ideal; an auditorium with 20 students is quite empty compared with the
number of sears available; and a 10-seat minivan with 20 students in it is very
crowded if not downright unsafe! When we ask which situation is the most crowded,
we think multiplicatively and consider borh quantities at the same rime. Namely, we
use nultiplication and division in our solution.

More Than One Way to Compare
Objective: compare situations using both additive and multiplicative reasoning,

Every July 1st, the children in the Hoilinger family are measured and the height
recorded on the inside sill of their kitchen door. And every July 1st there is a
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family debate over who grew the most during the past year. Expiore this probiem
in two ways: using additive and multiplicative thinking.

i 4
WL 39"} Nick

e 30| wil
Boys' heights before

being measured

Boys' heights after
being measured

Things to Think About

Both Jake and Nick grew 3 inches, while Will only grew 2 inches. Using additive
reasoning, we can state that two of the boys grew the same amount (and the
most that year) and they both grew 1 more inch than Will. But we can consider
, growth in another way—in relation to their starting heights. When we compare
the amount of grovvth to each boy’s starting height, we are us:ng multiplicative
thinking. Jake grew &5, or =g. of his startmg height; Nick grew 5=, or =5, of his
starting height; and Will grew 28, or <%, of his starting height. Even though Jake
and Nick each grew 3 inches, we can now see that compared with where they
started, Nick shot up more relative to his origina! height. One way to think about
this is to compare the simplified ratios: 20 2 Using this type of multiplicative
reasoning, we find that Will also grew reiatlveiy more than Jake since he increased
his height by - compared with 5’5 Notice that just as we use the operations of
addition and subtraction for additive reasoning, we use the operations of multipli-
cation and division for multiplicative reasoning when we compare relative amounts, -
Another way to compare the boyﬁ growths multiplicatively is to record them as
a percent: 630 5%, 5¢ = 8%, and 2‘8» = 7%. Nick’s height increased by 8%, Will's
height by 7%, and Jake's height by 5%. If we calculate percents by comparmg the
new heights with the old heights, we get similar results: £ = 105%, 3% = 108%,
and %% = 107%. The 107%, for example, indicates that Wlh cheedeo hlS earlier
-height (100%) by an additional 7%. Thus, this year the Hollingers agreed that
Nick grew the most, followed by Will, followed by Jake—relatively speaking! &

Ratios as Rational Numbers

Many ratios belong to the rational number set. Some ratios, however, do not. Ra-
tional numbers cannot have zero in the denominartor (see Chapter 5, page 100, for
more information), but it is possible to have a ratio with zero as the second number;
the ratio 11:0 can be used to compare 11 male Boston Red Sox players with O female
Boston Red Sox players, but it is neither a fraction nor a rational number. Other
ratios may involve irrational numbers such as 7 and V2 and also are not part of the
rational numbers (see Chapter 1, page 5).
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Some interpretations of ratio are closely connected to the meanings of fractions
described in Chaprer 5 but others are not. For example, we have seen how part-to-
whole ratios and fractions are related. Another fraction interpretation, the interpreta-
tion of fractions as the result of dividing two numbers, can be connected to ratios. In
these instances, ratios are reported as a single number (instead of a comparison) that is
created by performing a division. For example, the ratio of circumference to diameter is
reported as 7 and approximated at 3.14. The average number of people per household
in the United States was recently reported as 2.57. Batting averages are found by divid-
ing the number of hits by the total number of times at bat (in 1923 Babe Ruth had a
batting average of .393). The interpretarion of these divided ratios must be considered
carefully. Sometimes the divided ratio conveys information as an average (while there
aren’t 2.57 people in any household, we get a sense of the size of many American house-
holds). Other times it describes special relationships about particular geometric figures
or about an ability to hit baseballs. Notice that unlike a unit rate where a comparison
with 1 is made but not always explicitly stated, some ratios created by performing a
division do not convey a comparison of two quantities. Depending on the quantities in
the division, some of these divided ratios are rational numbers and some are not.

One aspect of understanding ratios thar is related to rational number knowledge
involves understanding equivalence. Students benefit from comparing and reasoning
about equivalent ratios and rates. The rules for inding equivalent ratios (regardless
of the type of rario) are exactly the same as the rules for finding equivalent fractions.
However, equivalent ratios are different in one important way from equivalent frac-
tions. Equivalent fractions, such as 4, ¢, and 43, are different symbols that refer to the
same quantity or rational number—one half——a number that you can locate on a
number line. On the other hand, equivalent part-part ratios do not name the same
guantity but rather represent the same comparison between two quantities. The fol-
lowing equivalent ratios—1 girl to 2 boys (1:2), 3 girls to 6 boys (3:6), and 40 girls to
80 boys (40:80)—name a comparison between two quantities, and each also names
the same comparison of quantities—there are half as many girls as boys. Likewise,
rates such as 125 miles in 5 hours and 50 miles in 2 hours are equivalent because they
represent the same hourly speed of 25 mph, but they do not refer to the same dis-
rance traveled (125 versus 50 miles). Since some ratios are part-to-whole fractions,
we can see how confusing this must be for students. Thus, when discussing the mean-
ing of number sentences, we need to consider the context or situation in which the
symbols arise in order o interpret them correctly and consider the type of comparison
used {part-whole versus part-part versus rate ).

Exploring Squivalent Ratios
Objective: examine eguivaience of ratios.
Materiais: pattern biocks.

Using pattern blocks, we can ouild a poivgon “chain” that consists of 2 equilateral
5 POVE
rriangles and 3 trapezoids, in the ratio of 2:3:
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If we have 4 triangies and 6 trapezoids, we can build two chains:

I chain

. 2 chaing

Using the ratio of Z triangles for every 3 trapezoids, complete the tabie below
and answer the questions that foliow.

NUMBER OF NUMBER OF NUMBER OF RATIO OF TRIANGLES
CHAINS TRIANGLES TRAPEZOIDS TO TRAPEZOIDS

1 2 3 2:3

Z

3

4

18
135
32:48

1. If the number of trapezoids used to make chains is 18, how many triangles are
needed? What is the ratio of triangies to trapezoids? Is this ratio equivalent to
2:37 Why or why not? Is this ratio a part-whole or part-part ratio?

2. If you want to use 135 triangles, how many trapezoids will you need so the
refationship between triangles and trapezoids is maintained?

3. If the total number of blocks is 65, how many triangles and trapezoids are there?

Things to Think About

Did you notice any patterns in the tabie? The numbers of triangles are multiples of
two, and the numbers of trapezoids are multiples of three. Two chains have a
triangle/trapezoid ratio of 4:6, and three chains have a ratio of 6:9. in addition, all
the ratios of triangles to trapezoids (2:3, 4:6, 6:9, etc.) are equivalent. Why? Be-
Cause each subsequent ratio compares a different number of triangies and trape-
zoids, but all the comparisons are multiples of the original comparison, the ratio
2:3. Put differently, we can take 6 triangles and 9 trapezoids and arrange them to
show the same comparison of quantities—3 chains of 2 triangles and 3 trapezoids.

3 sets of 2 triangles:
3 trapezoids

If 18 trapezoids are used to make polygon chains, there are six 2-triangle-
3-trapezoid chains. Thus, six sets of 2 triangles, or 12 triangles, are needed, and
the ratio can be written as 12:18. Tables like the one above are heipful tools for
organizing one’s work, but may not lead to developing students’ understanding
of the multiplicative relationships inherent in proportional situations. This is
especially true if students successively add 2 in the triangle column and 3 in the
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trapezoid column, building up the values in each column until they reach 12 tri-
angles and 18 trapezoids: there is some question whether students see multi-
plicative relationships in situations that they solved using addition strategies.
One way to promote multiplicative reasoning is to introduce students to ratio
tables that display equivalent ratios, with the guideline that predominately multi-
plication and division should be used to find equivalent values. The focus is on
the relationship between the two quantities in the ratio and on operating on both
of these quantities in order to form equivalent relationships that have the same
comparison of quantities. Two different ratio tables that might be used to solve
this problem are shown below.

RATIO TABLE A RATIO TABLE B
x 3 X2 ' X 6
Y

YR /Ty
TRIANGLES | 2 1 6 l 12 TRIANGLES { 2 l 12
TRAPEZOIDS} 3 : 9 1 18 TRAPEZO:DS' 3 } 18
u \\/4

X 3 X 2 X 6

How many trapezoids are needed if there are 135 triangles? Did you divide

135 by 2 (67.5) and then muitiply that quantity by 37 If we take 67.5 sets of the ,
2:3 ratio, we end up with an equivaient ratio of 135:202.5. If 135 triangles are , g
used to make chains, we can make 67 compiete chains and haif of another chain!
One way students might approach this problem is to analyze the quantities and
then use a ratio table. There are many correct ways to build a ratio table, and as
can be seen, to combine operations to solve problems. In Table A, a student first
muitiplied 2:3 by 135 to get an equivalent ratio of 270:405, then subsequently
divided each part of the ratio by 2 to end up with 135 compared with 202.5. The
student using Table B multiplied the 2:3 ratio twice and then combined the parts.
First, she muitiplied 2:3 by 60 to get the equivalent ratio 120:180. Then, in-
stead of continuing from 120:180, she again multiplied the ratio 2:3 by 7-% to
oroduce the equivalent ratio 15:22{;. By combiningthe ratios, 120:180 and
15:224, she ended up with 135 to 2021,

P RATIO TABLE A RATIOC TABLE B
x 135 + 2 (T ’
YR .
TRIANGLES | 2 | 270 i 135 /%60 \
R 7w .
G - - 4 ; E 7 07 5 : N ) [ ; 1
- TRAPEZOIDS | 3 | :1,05 202.3 wanates |21 120 | s i
‘_\\_“./‘f»! \V/“j ; X | ! - o
135 +2 TRAPEZOIDS | S | 180 | 22+ J‘ 202+
‘ ' 1 I |
(135 +2 = 677) Q?\w/}y 1”;w //ﬁ
2 | X860  x 7+
3 X677 S~ i

/
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If the total number of blocks is 65, how many triangles and trapezoids are
there? One way to answer this question is to extend the table and record the
number of triangles and trapezoids until a total of 65 blocks are used. Another
way involves noting that 5 blocks are needed for the ratio 2:3 and there are
13 sets of 5 in 65. Since in the original ratio there are two triangles to three
trapezoids and there are 13 sers of this ratic, you can multiply each of these
parts by 13 {2 > 12 and 2 > 13} to find the equivaient ratio, 26:3S. Another
approach is to use a ratio table with three rows (triangles, trapezoids, total
blocks}. Try using the ratic tabie as a tool for solving this problem.

TRIANGLES 2 20 6

&
TRAPEZOIDS 3 30 £ 39

TOTAL BLOCKS 5 50 15 65

X3

If there are 65 blocks, 26 are triangles and 39 are trapezoids. 4

We do not add and subtract part-part ratios in the same way we add and subtract
fractions. When adding or subtracting fractions, we are interpreting the quanrities as
parts of wholes and are joining parts to make wholes. The triangle/trapezoid ratio in
Activity Z is not a comparison of parts with a whole but a comparison between a part
and another part. When these part-part ratios are combined, the end result is an-
other equivalent comparison, not a total. When we-combine two polygon chains
(2:3 + 2:3), we write the resulting ratio of triangles to trapezoids as 4:6, which means
four triangles compared with six trapezoids; when we combine two fractions (5+3),
we are finding the total amount. The sum is 1, or 14, which means one whole unit
and one third of a second unit. Therefore, contextual information is very important
and aids in helping students focus on the type of relationship they are considering—
a comparison between parts and parts rather than between parts and a whole.

Proportions

Lessons about proportions are often included in instructional materials about ratios
and rates in the middle grades. A proportion is a mathematical statement of equality
between two ratios. Stated another way, proportions tell us about the equivalence of

ratios. For example, ¢ = & is a proportion. Both ratios can be simplified, indicating

they represent the same comparison: ¢ = £. The fractional form of writing propot-
tions is generally preferred since it is more suitable for solving equations. However,

proportions can also be presented using ratio notation: 6:9 = 8:12 or 6:9 =: 8:12. The
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double colon indicates the ratios are equivalent. When proportions are presented
devoid of context, the symbols can be interpreted as equivalent fractions or as equiv-
alent ratios (which includes rates).

A proportion includes multiplicative relationships “within” the individual ratios
and multiplicative relationships “between” the two ratios. For example, to make an
apple pie we need 2 cups of sugar for every 6 cups of apples, or 3 cups of sugar for every
9 cups of apples. The proportion £ = 3 represents this relationship. The “within” ratios
are 2:6 and 3:9 and both blI"lpth to 1-3 or 0.3. The “between” ratios are 2:3 and 6:9
and both simplify to 2:3, or 0.6. The diagram below illustrates rhat in a proportion,
the two “within” ratios are the same and the two “between” ratios are the same.

between

F
Q Q}

within ;w:thm

between

A:B and a:b within ratios
A:a and B:b between ratios

There is another “within” ratio relationship: if we multiply the first number in the 2:6
ratio by 3 we will obtain the second number in the ratio (2 X 3 = 6). If we examine
the multiplicative relationship “between” the ratios, we discover that multiplying both
numbers in the first ratio by 1.5 {2 X 1.5 = 3; 6 X 1.5 = 9) gives us the second ratio.
Likewise, dividing both numbers in the second ratic by 1.5 returns us to the first ratio.

x 1.5 + 1.5
R /A
=3 =1
N / N
x 1.5 + 1.5

This quantiry (1.3} is known as a scale factor and is discussed in detail on page 178.
Choose a different scale factor, such as 2, and make another proportion (¢ = &). Can
vou figure out whv these two ratios are emnvaiem?

A cgar“uumt& of proportions is that the “cross products” are equal. Using the
proportion £ = 3, this means rhat 2 X 9 shouid equal 6 X 3, which is true: 18 = 18.

et's nwplorc why this occurs. Cne way to think of it is thar since the ratios are equiv-
alent, thev simplify to an identical ratio—rhe “within” ratio—an identical compari-
son of quantiries—in this case 1 to }—and + = . Likewise, both of the ratios can be
FEWTITIEN as a comparison of 6o 18 ¢ “b ) This Lquwalent ratio is found bv Lakmg
three sets of the ratio 2:6 and two sets of the ratio 3:9. The first number of one ratio
indicates how many sets of the other ratio are needed to make them equivalent. As
with L = 4, the cross products for & = - are the same.
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Unfortunately, students are taught how to use cross products to find missing values
(£ = 3 12x = 24, x = 1) before they have developed an understanding of propor.
tional situarions. As a result they apply the cross product algorithm to any and all sigy.

ations even though cross products are only equal when the ratios are equivalent—rthe
relationship doesn’t hold for all pairs of ratios! Students instead should first have ey.
tensive opportunities 1o solve problems that invoive proportions and multiplicarive
thinking using their own ideas and methods before being introduced to the cross prod-

uct aleortthm. For example, the value of be tound 11 the pProportion above by

I T SR ey AT
usIg multipiicative relationshins i the

Thetweer: ratios

between + 2

T
within — o5 WIthIn
. ™ - o [Ey .
X " J oo

between + 7

The phrase proportional reasoning is used when describing the thinking that has
been applied to the solution of problems that involve multiplicative relationships.
Topics studied in upper elementary and middle school such as fractions, percents,
ratios, similarity, scale indirect measurement, and probability involve some aspects of
proportional thinking. That said, proportional reasoning involves more than simply
using a proportion or cross products as part of a solution. An important step in
understanding proportions occurs when students think of a ratio as an entity unto
iself—they don’t just consider the two quantities that make up the ratio separately
but are focused on the relationship berween the quantities. In addition, when stu-
dents start to recognize proportional situations in everyday settings and to reason
multiplicatively about them, they are developing insight into this topic. Teachers
should provide students with a variety of problems to solve in these areas starting in
about fourth grade, because it is now known that it takes a number of years for
students to develop the ability to use and thus be able to reason proportionally. One
major recommendation from many researchers is that we should hold off teaching
the standard algorithms for operating on fractions and solving proportions until
students have made sense of some of the fundamental concepts.

2. Applications of Ratios and Rates

Proportional reasoning is an essential component of many courses in mathematics
and science, including algebra, geometry, chemistry, and physics. Ratios and rates are
used to answer questions about unit pricing, population density, percents (see Chap-
ter 7), speed, slopes, conversion of money, map reading, reductions and enlargements
of figures, fractions (see Chaprer 5), and drug concentrations.

Simifarity

In everyday life we talk about things being “similar” or “a little bit alike,” but the
mathematical meaning of this term refers to a particular geometric concept. What
does it mean for two shapes to be similar? Srudents in grade 5 or 6 are often introduced
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Exploring Similar Figures on a Coordinate Grid

Objective: explore how equivalent ratios can be expressed arithmetically, geomet-
rically, and algebraically,

Materials: graph paper,

Draw & graph of the first quadrant and label the x-axis “length” and the y-axis
“width.” Draw the rectangles with the foliowing dimensions {width to lengthj on
the coordinate gric: © » 4. € » £, 0 2 10 & > 1E. Each rectangle
stiould start at the ongin (G0 and s shorter side shoulc align with the y-axis
and its longer side should align with the x-axis. Next draw a line from the origin
through the upper right corner of the 12-by-16 rectangle Which rectangies are
simiiar to one another? Which width-to-iength ratios are equivalent? How are the
width-to-length ratios shown on the coordinate grid? Draw another fine from the
origin through the upper right vertex {corner} of the & X 10 rectangle and use it
to determine the dimensions of four rectangles similar to it.

anc

Things to Think About

Did your line go through the upper right corner of the 3 X 4, 6 X 8, 9 X 12, and
12 > 16 rectangles? This is because the width-to-length ratios of these rectan-
gles are equivalent—they name the same comparison between guantities, since
each of these ratios can be simplified to the “within” ratio of .75:1. In addition,
we can say that these four rectangles are all similar because they have corre-
sponding angies that are congruent and corresponding dimensions that are pro-
portional. Using this line we can find other rectangles that are similar to these
four. Take a point on the line such as (6, 4.5) and draw vertical and horizontal
lines to the axes. The resulting rectangle, 4.5 X 6, is similar to the other rectan-
gles. These multiplicative relationships can be expressed arithmetically using
width-to-length equivalent ratios but alsc geometrically using similar rectangles
nested within each other.

Vi

e

O NSO

i t [
0 2 4 6 8 1012141618 20 x
Length

The slope of this line is % or .75. The slope, which is a comparison of vertica
change with horizontal change, algebraically connects these equivalent ratios

176 / CHAPTER §




s

Ratios that are equivalent, such as 3:4, 4.5:6, 6:8, 9:12, 12:16, and many more,
ali fall on the same line on the grid.

The width-to-length ratio of the other rectangle, 8 X 10, does not name the
same comparison. Let's find other ratios {and thus rectangles) that are equivalent
(or similar) to 8:10. One way is to use a ratio table to list equivalent ratios such as
4:5 or 12:15. Another is to draw a line from the origin (0,0) through the point
{10,8) and extend it. The coordinates of points on the line represent width-to-
length ratios equivalent to 8:10. If you draw vertical and horizontal lines from
points along the line, you create similar rectangles, suchas2 X 2.5, 4 X 5,6 X 7.5,
and 12 X 15. The slope of this new line is 2—the simplified “within” ratio for this
set of equivalent ratios.

YA

Width

£ 6

NI

I I |
8 10 12 14 16 18
Length

"h‘
o~ |

!
0 2

Rectangles similar to 8:10
(width:iengthj

Draw a line from the origin with slope i on this second graph. How do the differ-
ent lines compare? Notice that the line with siope < is steeper. Can vou estimate
where a fine representing ail equivalent ratios to 9:10 wouid go on the graph? &

A common application of the principles of similarity involves making scale drawings
and models. Scale drawings are drawings of similar figures that have either been
enlarged or reduced. Jrawings of microscopic organisms are eniarged in biology
books, while pictures of our solar system are reduced. Three-dimensional scale mod-
els are used in automobile and aircraft design and in architectural plans. Srudents
may have read about both enlargements and reductions in children’s literature
(Gulliver’s Travels, The Littles) and may have firsthand experience with models in the
form of miniature cars and train sers. Some of your students may have tried to make
sense of a set of blueprints or to enlarge a drawing in art class.
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Activity

How do we make enlargements and reductions! To create a scale drawing, we
need a scale factor. The scale factor is a number by which all of the dimensions of an
original figure are multiplied to produce the dimensions of the enlargement or
reducrion. When the scale factor is greater than 1, the new figure, sometimes re-
ferred to as an image, is an enlargement. When the scale factor is a number between
0 and 1, the resulting figure will be reduced in size, and is often referred to as a reduc-

tion. Scale factors use the onerator interpretation of rational number in which the

fraction acte either to stretch (entaree) or to shrink (reduce) all dimensions of 2
drawing or three-dimensional model (see Chaprer 5, page 108, for addinonal infor-
mation about this interpretation ). Mathematicians ofter use the letter k to stand for
the scale factor.

How do the perimeters and areas of similar figures compare? What relationship
exists between the volumes of enlarged or reduced figures? These guestions are

explored in the following activities.

Perimeters and Areas of Squares
Objective: look for patterns in the perimeters and areas of similar squares.

Materials: graph paper.

What happens to the perimeter of a square when the dimensions (sides) of that
square are doubled? tripled? quadrupied? What happens to the area of a square
when its dimensions (sides) also are doubled? tripied? gquadrupled? Investigate

‘doubling dimensions by drawing a square of any size and calculating its perime-

ter and area. Next double the length of the sides of that square and calculate its
“doubled” perimeter and area. Do this for several squares, keeping track of your
measurements and looking for patterns in the “doubled” data. Then investigate
what happens to the perimeter and area of squares if you triple or quadruple the
side lengths. ‘

Things to Think About

Did you notice that by doubling and tripling dimensions, you were making
eniargements? What is the scale factor, k, in each case? When the sides are dou-
bled, k = 2; tripling dimensions means that k = 3; and quadrupling gives us k=
4. Did you notice that when the side lengths were doubled, the perimeter was
2 times longer? When the side lengths were tripied the perimeter was 3 times

‘longer, and when the sides were quadrupled, the perimeter was 4 times longer

than the original perimeter. We can generalize that the perimeter of an enlarged
square with scale factor k is equal to k times the original perimeter. Take a
minute and explain why.

When the dimensions or sides of a square are doubled, the new area is 4 times
as large; when the side lengths are tripled, the new area is 9 times as jarge, and
when the side lengths are quadrupled, the new area is 16 times as large. Why?
Let's use a 1-by-1 square to explain. Doubling each dimension means that the
new dimensions are 2 by 2, or (1 X 2) by (1 X 2). The area of this “doubled”
square can be found through this series of calcuiations: ' '
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Original Area =1 X 1
Doubled Area = 2 X 2
= {1 X 2) x {1 X 2) double each side of the original square
= {1 X 1) X {2 X2) rearrange the order and grouping of the
factors
=1X4 original area times 4
=4 the new area is 4 times greater than

the original area

This can also be shown by analyzing the following diagram:

| 2

Notice that four 1-by-1 squares fit in the “doubled” square. Since each dimension
is doubled (k = 2), the resulting area is quadrupled (2 X 2 or k = 4). The dia-
grams below show why the area of a square is 9 times greater when each side is
tripled and 16 times greater when each side is quadrupled.

tripling dimensions quadrupling dimensions
T ] 3%x3 T 4 x4
A= 15q. unit A= 9 sq. units A= 1 5g. unit A= 16 5q. units

E N

Areas of Similar Figures

Objective: generaiize hiow the scale factor arfects the area of similar figures.

Do the relationships tetween areas that resuit when the dimensions of squares
are doubied, tripled, and gquadrupled hoid true for rectangies, triangies, and cir-
cles? That is, do the areas of other similar figures using scale factors of 2, 2, and
a foilow what we observed with squares? Using a calculator to find-areas {area of
rectangle = lw; area of triangle = 1bh; area of circie = nr?), complete the “dou-
bling” table on page 180. Each time you double, triple, or quadrupie ail of the di-
mensions, the angles in the enlarged figures should be congruent {(have exactly
the same measure) with the angles in the original shapes, as you are creating
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similar figures. Examine the data for patterns. Construct your own tables for
“tripling” and “quadrupling” dimensions. Explain the patterns you observe,

RATIO OF
DIMENSIONS DIMENSIONS DIMENSIONS
DIMENSIONS AREA DOUBLED DOUBLED DOUBLED
SHAPE {IN T} (IN cvi?) {(IN CM) AREA (IN CM?} AREA TO AREA

Rectangle =4, w=3 =8 w==¢6

Rectangie

Triangle b=5h=4 b=10h=58

Triangle o
Circle r=3 r==0

Circle o

YThings to Think About

The relationships you observed with squares does hold true for rectangles, trian-
gles, and circles. Doubling the dimensions of these shapes results in areas that

re 4 times as large as the original areas. Likewise, tripling and guadrupling
dimensions leads to areas of the enlarged shapes being 9 and 16 times larger, re-
spectively. Stated in another way, if the scale factor is k, the area of the enlarged
figure is k? times the original area. Does this re!ationshlp hold for scale factors
that are less than T" Yes. Let's say the scale factor is . This means we muitiply
both dimensions by - % for a combined reduction. of ( 3, or l— In summary, the area
of a scaled figure is k? times the original area, where k is the scale factor, regard-
less of the size of k or the original area of the figure. A diagram might heip you
visualize these relationships.

4 4.

AN

A circle doesn’t have two dimensions like those of length and width. Why then
is the area of the circle four times greater when the radius is doubled? in the for-
mula for finding the area of a circle (A = =r?), notice that the radius is squared.
This means that you multiply the radius by itself, rather than having two different
dimensions such as length and width. When you double and then square the
radius, the new area is (2r)?, or 4r?. The relationship holds: the area of the scaled
circle, using scale factor k, is k* times the original area. &

The relationship between the dimensions of a figure and the area of that figure is very
similar to the relationship that occurs when one square unit of measurement is
converted to another. One square meter is equivalent in size to a square that is
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Activity

100 centimeters per side. Since a smaller unit of measurement is used to determine
the length of each side, the numerical value of the area based on these smaller square
units- will be greater—10,000 (100 X 100) times greater! The area of the original
square meter doesn’t change, but the size of the unit used to measure the area does.

1 m? I'm 10,000 cm? | 100 cm

=ns
Im 100 cm

Doubling Dimensions of a Solid

Objective: explore the relationship between volumes and scale factors of simiiar
figures. ‘
Materials: multifink or unit cubes.

What happens to the volume of a rectangular prism if one, two, or ail dimensions
are doubied?

/ /

7

Z2x3x1 2 X3 X2 2 X6 X2 4xX6x2

Vo= AU double one double two double three
dimension dimensions dimensions
V= 12u3. v

= 24u° Vo= 48u’

You can-use unit cubes, drawings and sketches, or numerical data to explore the
changes as you double one dimension at a time. You may find it easier to recog-
nize relationships and patterns if you organize your data in a table like the one on
page 182. In the example given, each doubled dimension is underlined. You may
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also wish to use unit cubes or multilink cubes to build one prism and the Subse.
quent “doubled” prisms in order to “see” the results of doubiing dimensions.

VOLUME AFTER VOLUME AFTER VOLUME AFTER
. ONE DIMENSION TWO DIMENSIONS THREE DIMENSIONS
DIMENSIONS  ORIGINAL VOLUME ~ DOUBLED (CUBIC DOUBLED {CUBIC DOUBLED {cugic
OF PRISM {cusic uniTs: U) UNITS: U3) UNITS: U3} UNITS: U%)
Tx2x5 10 23 2xE =120 234 x5 =40 2x&x10=gg

If you tripie all the dimensions of the prism, how many times greater is the
volume of the prism? How are the volumes of similar figures related?

Things to Think About

What happens to the volume when one dimension is doubled? two dimensiong
are doubled? all three dimensions are doubled? The volume changes by powers
of two. Doubling one dimension doubles the volume (X 2); doubling two dimen-
sions quadruples the volume (X 2 X 2); doubling all three dimensions results in
an eightfoid increase in volume (X 2 X 2 x 2). This final volume {X.8)is the re-
sult of each dimension (length, width, and height) being multiplied by two (dou-
bled), and then multiplied together.

When all three dimensions are tripled, the volume becomes 3 % 3 X 3, or 27
times greater, since each dimension is multiplied by 3. The volumes of similar fig-
ures are related by the scale factor. If the scale factor is 2, the new volume is 23,
or 8 times greater. If the scale factor is 3, the new volume is 3%, or 27 times
greater. We can say that when the scale factor is k, the volume of the similar fig-
ure is k? times the original volume. The relationship holds for reductions as well.
If a scale factor is 4 then the volume of a reduced figure is (;)°*—or g—times the
original volume.

The relationship between increasing dimensions and volume can be used to
explain why the existence of giants is mathematically questionable. Imagine a
six-foot, 200-pound man and consider how he is similar to a rectangular prism.,
He might measure two feet across the chest, one foot front to back, and we know
he is six feet tall. If we doubie all three of those dimensions, the resulting giant is
four feet across at the chest, two feet front to back, and twelve feet tall. The vol-
ume of the giant, however, is eight times greater. Because of the relationship be-
- tween volume and mass we can state that the mass of the giant is 1600 pounds.
This weight is too heavy for human bones (even big ones) to support! Using this
same line of reasoning, it also is unlikely that a giant-sized. grasshopper would be
possible. In this case, the large size and weight of a giant grasshopper couldn’t be
sustained by its delicate structure and lack of an internal sketeton. 4

Unit Rates

When a rate is simplified so that a quantity is compared with 1, it is called a unit rate.
Unit rates answer the question how many (or how much) for 17 Some unit rates are con-
stant. This means that the simplified rate does not change (e.g., there are 2.54 centi-
meters for every 1 inch). Conversions between measurements (inches to feet, ounces
to pounds, kilograms to pounds) are examples of constant unit rates. Other unit rates
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Activity

vary. The most common example of a varying rate is the monerary exchange rate.
The rate of 1.20 Euros for 1 U.S. dollar is not fixed. Six months from now the rate
may be 1.34 Euros for 1 U.S. dollar or it may be 1.05 Euros for 1 U.S. dollar!
Whether or not a rate is constant or varies is rarely addressed in instructional materi-
als, but it is an important ropic for students to discuss.

Sometimes a rate is expressed as a single number. As seen earlier, single number
rates are created by dividing one quantity by another. Some of these single number
rates are actually unit rates, where the unit is implied but not explicitly stated. In
other cases the comparison is not so clear. For example, in the paper we might learn
about the death rate in a particular country being 6.8. Death rates are comparisons to
1000 people so this is not a unit rate (nor is it actually a rate, since people are being
compared to people!). On the other hand, a heart rate of 130 is a unit rate, because
the comparison is the number of heart beats with 1 minute of elapsed time. In gen-
eral, it is difficult to establish whether or not a single number is a unit rate without
investigating how the rate was derived. Unemployment rates, postal rates, mortgage
rates, and inflation rates are interesting to research and discuss.

One of the interesting things about unit rates is that there are two ways to express
the relationship. For example, at a local farm stand, tomatoes are $1.49 per pound.
Most of us are very familiar with this type of unit rate from grocery shopping, where
the unit refers to the number of pounds (1 pound of tomatoes for $1.49). But what if
the unit refers to the number of dollars? How many pounds of tomatoes can you buy
for $1.007 We can buy about 0.67 pound of tomatoes for $1.00. Usually, students find
one form of a unit rate easier to interpret, but the context of when and how the rate
is being used makes a difference. In this next activity, think about which unit rates
make the most sense to you and why.

A/

Unit Rates

Objective: understand the dual nature of unit rates.

Express the following ratios as two different unit rates. Try using a variety of
tools to help you determine the unit rate, such as ratio tables, pictures, or
graphs. Which form of each ratio makes the most sense? Why?

120 miles in 2 hours

5 pizzas for 3 teenagers

$42 for 7 watermeions

50 GBP {British pounds)} being equivaient to $88.48 USD (U.S. doilars)

20 candies for $2.50

Things o Think About
Two different unit rates are gossible for 2ach of the above ratios:

50 miles in | hour or 1 milein é(; aour (1 minute)

1 pizzas for 1 teenager or 1 pizza for £ teenager

56 for 1 watermeion or ST buys 5 watermeion

1 GBP is equivalent to or $1 USDs equivalent to 0.5651 GBP

$1.7696 USD
1 candy for 124¢ or S1 buys 8 candies
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Some unit rates make no sense, such as 1 pizza for % teenager. And some unit rates
are more practical in one form than in another, such as miles traveled in 1 hour,
However, often both unit rates provide useful information. in a candy store, we
sometimes may want to spend $1.00; at other times, when we only want a few
pieces, it is useful to know the cost of 1 candy. When visiting another country we
need to be able to convert currencies depending on the circumstance (/ just arriveq
in London. How many GBF will | get for S257 or | am about to get on the plane for
“home and | didrn’t spend 6 GBF How many U.S. doliars have | tied up in GBPs?),
How did vou find the unit rates? Constructing a ratio table and then dividing is
one approach. Labels are essential in order to keep track of the relationships. For
exampis:

w7 +6
/_\\ /’—\\

/ A *
DOLLARS % S42 i S6 [ 1
x ! -
WATERMELONS } 7 1 ! i e
\ N I .
A NA

+ 7 +6

It heips if you decide ahead of time which variable you wish to be 1 and then
think about the operation that will produce that result.

Students often use pictures to make sense of these relationships, -especially
when the numbers are small and easy to manipulate.

pizza

; 1
i 3

Each child gets 15 pizza. A
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Sometimes finding a unit rate is an especially efficient merhod for solving a propor-
tion problem. For example, if 4 gallons of gasoline cost $10 and we need to calculate
the cost to fill up a 17-gallon tank, one method is to find the unit cost ($2.50 per gal-
lon) and multiply that amount by 17 ($2.50 X 17 = $42.50). However, unit rates
should not be used to the exclusion of other methods. A similar problem—if 4 gal-
lons of gasoline cost $10, how much will 16 gallons cost?—can be solved quite differ-
ently and more easily. Notice that 4 groups of the rate 4 to 10 is equivalent to
16 gallons for $40. By multiplying the initial rate by a factor of 4 (122 X & = mg’fg’m),
we have saved time and mental energy and perhaps avoided error since 10 X 4 is so
straightforward! The second method is sometimes referred ro as a factor-of-change
method. The factor-of-change method could have been used ro solve the first prob-

4 gallons 4.25 — 17 gallons

lem (375" X 52 = L222) but the numbers in that problem don’t lend themselves
to that method; we are not likely to recognize that 4.25 is the correct factor of
change, nor multiply by that factor mentally. Try to give students problems with
numbers that lend themselves to the use of both approaches (not in the same prob-
lem) and encourage. discussions about héw we should choose a solution method
based on the numbers in a problem.

Distance, Rate, and Time

The relationships among distance, rate, and time are known by the formula D =

Students learn about distance from personal experience getting to different locations
on foot, by bicycle, or in a car. They realize that it takes different amounts of time,
depending on the mode of transportation, to cover the same distance. Many students
do not understand that speed is the common term for rate and is actually the com-

parison of distance with rime. Since speedometers give us speed as one number, we

tend not to think of it as miles per hour. In terms of instruction, researchers suggest
that students in grades 6 through 8 would benefit from thinking about and discussing
ways of comparing speeds, the difference berween constant speed and average speed,
and how rates are used to measure speed. Lamon (1999, 215) states: “Knowing the
rule [D = 7] does not provide the level of comprehension needed to solve problems.
We want students to develop an understanding of the structure of this set of relation-
ships that comes from, but goes beyond, the investigation of specific situations.
[Tihey should be able to make generalizations such as this: if distance doubles, rime
will have to double if speed remains the same, or speed has to double if time remains
the same.”

One way ro expand students’ interpreration of the distance-rate-time relationship

is to use graphs to compare different speeds. Two bicvelists, who live 10 miles aparr

on the same road, follow rhe exact same route every Sunday morning. Roberta’s aver-

age speed on this roure is ph and feifs average speed is 15 mph. They both leave
at 3:00 a.M. They meet at the same location every Sunday for a cup of coffee. How
far have rhey biked and what time is it when they meet for cotfee!

There are a lot of things ro consider in this probiem. First, what does it mean that
their average speeds are 11 and 15 miles per hour, respectively! Average speed im-
plies that if we could have mainrained a constant speed for the whole distance, this
would be it! When biking we slow down, speed up, stop, and sometimes maintain a
constant speed. Average speed is the toral distance traveled compared with the total
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time it takes us to trave! that distance (rather than the average of all of the individ.
ual segments of a trip). Since Roberta and Jeff bike this route regularly, they know
their average speeds. When we graph average speed, we treat it as if the speed were
constant but it is important to realize that it really is not.

Second, when graphing distance-rate-time relationships, which variable goes on
each axis! Usually rime is on the x-axis as it is the independent variable (see Chap.
ter 9). Distance traveled depends on the time and is on the y-axis. To graph thege

¢

speeds we plot (rime, distance) points such as (1, 15), which represents thart afte;
o i L

I hour, Jeff has traveled a total of 15 miles. Did vou notice thar Roberta and Jeff

live 10 miles apart’ Who lives farther away rrom their cofree spot! it is not explic-
itly defined in the problem, although we are told that they always meet there,
Since Jeff's speed is faster, if Roberta lives farther away, thev could never arrive g

the same time.

15 mi. 15 mi.

However, if Jeff lives farther away, then he might be able to carch up to her since he
bicycles at a faster speed.

11 mi. 11 mi. 11 mi

~—10mi—
15 mi. 15 mi. 15 mi. -

How is this difference in starting location shown on a coordinate graph? The
graph of Jeff’s trip starts at (0,0), meaning he has traveled 0 minutes and gone 0 dis-
tance at the beginning of the bike ride. We start the graph of Roberta’s trip at (0,10);
she has traveled O minutes but is already 10 miles closer to the coffee shop since they
are starting at different locations along the route. The line representing Jeffs trip in-
creases by 15 miles for every hour while the line representing Roberta’s trip increases
by 11 miles per hour. Why are these trips shown as straight lines? Remember we are
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interpreting average speed as constant speed even though we know in reahty that
this isn't the case. The graph of the two trips is shown below.

The Bicycle Trip

A ,
o
55+ /
5ok Jeff/
45| Roberta’

Distance (mi.}

Notice that the line representing Jeff’s speed is steeper than the line representing
P g p p g

Roberta’s speed. What does this mean in reality! Does Jeff go farther! Does he ride
taster! Is he riding uphill? Students sometimes interpret graphs as pictures rather
than as relationships between variables (students think that the steepness of the line
representing Jeff’s speed indicates he is going up a steep hill). Answering these ques-
tions, examining the relationship between distance and time, and linking the re-
sponses to the slopes of the lines (#4¢ or £ and 1) aids in developing students’
understanding of speed as a comparison of distamce w1th rime. When do Roberta and
Jetf meet for coffee? Two and one-half hours after starting, when Jeff will have ridden
37.5 miles and Roberta will have ridden 27.5 miles.

Distance-Rate-Time

Obfective: interpret speed as a compdarison of distance to time with circular mation,
Not all distance-rate-time problems invoive average speed or forward motion.
Sometimes we travel in circles—on a track or on a designated icop that brings us
back to the starting positicn. Jeff and Roberta also bicycle on a short track. Jeff can
make it around the track in 3 minutes; it takes Roberta 4 minutes. They start at
the same place and decide o race around the track 5 times. How long does the
race take? Who wins? Are they ever at the same spot along the track at the same
moment? If so, at what time and where?
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Things to Think About

In this problem we are not given any information about the speed or rate of the
riders but we can draw some conclusions. First, they are traveling the same dis-
tance, as they are going around the same track 5 times. Second, Jeff must pe
traveling at a faster speed, since it only takes him 3 minutes to bike around the
track versus Roberta's 4 minutes. A picture can help us visualize the relation-
ships. Every time Jeff does a complete lap (in 3 minutes}, Roberta has completed
7 lap since in 3 minutes she has gone 2 of 4 minutes.

Start Endoflap ! Endoflap2 Endoflap3  Endoflaps
J&R J J - J&R
T —— P f
VN TN ,/ \ TN TN

[

a [ \ Y‘

| / 4 + R
\\ / ) \ /- /
‘\\\4‘/// \\\\‘t—/ e \4// / \V \\P//
R ,

R

A ratio table can also be used to keep track of the information.

MINUTES 3 6 9 12 15
LAPS: JEFF 1 2 3 4 5
LAPS: ROBERTA 2 11 2; 3 32

It takes 15 minutes for Jeff to complete the 5 laps. The two riders meet at the
starting point after 12 minutes when Jeff has completed 4 compiete iaps and
Roberta has completed 3 complete laps, but Jeff than passes Roberta to win the
race in 15 minutes. How long does it take Roberta to finish? it takes her 20 min-
utes (can you explain why?}. Since Roberta bikes at a slower speed than Jeff, it
will take her a longer time to cover the same distance. Jeff, biking at a faster
speed, takes less time to cover the same distance.

Distance-rate-time situations are proportional situations, since the compari-
son of distance to time is a rate. Did you notice that when distance is a constant
-amount (5 times around the track), rate and time vary inversely? This means
that when a biker’s rate goes up or increases, the time needed to complete the
race goes down or decreases; but if a biker's speed or rate is slower (like
Roberta's) than the time needed to complete the same course has to increase.
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Opportunities to. explore relationships such as these informally help prepare
students for the more formal study of proportionality in middie and high school
algebra. &

Teaching Ratio Concepts

Ratios and rates are just two of the interconnected topics that contribute to students’
ability to reason proportionally. Many researchers suggest that students should be in-
troduced to these topics earlier, perhaps in fourth grade, with the focus on reasoning
(developing ratio sense) rather than on formal procedures. At the very least, we
should try to blend instruction of fractions, decimals, percents, and ratios together in
middle school; if we regularly facilitate discussions about the similarities, differences,
meanings within contexts, and strategies and solutions when solving problems in-
volving ratios, we will help students build understanding over time. It is important to
realize that much time and many experiences are needed for students ro build up a
web of knowledge, since these ideas are mathemarically complex. Introducing stu-
dents to ways of thinking multiplicatively thar use part-to-part reasoning as well as
part-to-whole comparisons and using models such as ratio tables thar facilitate the
use of multiplicative comparisons are essential. While as teachers we want to strive
for precision in language and classification, our more important job is to help stu-
dents make sense of this complex topic.

Questions for Discussion

[

What is the difference between additive and multiplicative thinking? When
do you think students start to reason multiplicatively? What might we do to
faciiirate this type of thinking?

[

- Generate concepts about ratios, and situations and examples where ratios
and rates are used. Check the newspaper, Internet, and other resources for
ideas. Draw a concept map that connects the topics you listed.

3. How are perimeters, areas, and volumes of similar figures related to the

perimeter, area, and volume of the original figure? Describe the important

features of a lesson you would use to introduce the idea of scale factor to
sixth graders.

hed rtion nroblems is rhe cross product merhod.

k? 1/{/ hat are the disadvantages of showing this

method TO stydents s“&&)?’ h@‘}”

g understanding of proportional

situations?
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